Clinical and Experimental Applications of NIR-LED Photobiomodulation

KRISTINA D. DESMET, B.S.,1 DAVID A. PAZ, B.S.,2 JESSE J. CORRY, M.D.,2 JANIS T. EELLS, Ph.D.,1 MARGARET T.T. WONG-RILEY, Ph.D.,3 MICHELE M. HENRY, B.S.,4 ELLEN V. BUCHMANN, B.S.,2 MARY P. CONNELLY, B.S.,2 JULIAV. DOVI, Ph.D.,2 HUAN LING LIANG, M.D.,3 DIANE S. HENSHEL, Ph.D.,5 RONNIE L. YEAGER, M.S.,5 DEBORAH S. MILLSAP, M.S.,5 JINHWAN LIM, M.S.,5 LISA J. GOULD, M.D., Ph.D.,6 RINA DAS, Ph.D.,7 MARTI JETT, Ph.D.,7 BRIAN D. HODGSON, D.D.S.,8 DAVID MARGOLIS, M.D.,9 and HARRY T. WHELAN, M.D.2

1Department of Clinical Laboratory Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin.
2Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin.
3Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin.
4Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin.
5School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana.
6Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
7Department of Molecular Pathology, Walter Reed Army Institute of Research, Silver Spring, Maryland.
8Department of Dentistry, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin.
9Department of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.

Photomedicine and Laser Surgery, Volume 24, Number 2, 2006, Pp. 121–128

ABSTRACT

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.